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1 Online Appendix

This section illustrates how the results and arguments of Hellman (2014) apply to the setting of

our main paper. There are two issues. First, our notion of a type structure is different from that

in Hellman (2014). Second, we modify Hellman’s (2014) example, so that it satisfies the injectivity

condition. Notation is as in the main text, unless otherwise stated.

Background Write X = {−1, 1}N0 for the Cantor space and x = (x0, x1, . . .) for an element of

X. Endow X with the Borel sigma-algebra generated by the set of finite cylinders, written B(X).

Take ν ∈ ∆(X) to be the measure obtained taking the product measure based on a 1
2 : 1

2 measure

on −1 : 1. We can extend ν to ν∗ : B(X; ν)→ [0, 1] so that ν∗(E) = ν(E) for all Borel E ⊆ X.

Take I = {1, 2} and, for each i ∈ I, let Ωi = {i}×X. Set Ω = Ω1∪Ω2 = I×X. Take µ ∈ ∆(Ω)

with µ = υ× ν and υ ∈ ∆(I) and υ(1) = υ(2) = 1
2 . Again, we can extend µ to µ∗ : B(Ω;µ)→ [0, 1]

so that µ∗(E) = µ(E) for all Borel E on Ω.

Define two operators: ι : Ω → Ω and S : Ω → Ω. For each ω = (i, x0, x1, . . .), ι(ω) =

(i,−1x0, x1, . . .) and S(ω) = (−i, x1, x2, . . .). These are Borel measurable µ∗-preserving transfor-

mations.

Game of Incomplete Information The player set will consist of I. Each player i ∈ I will have

an action set {Li,Mi}. Take Θ = {−1, 1}.1 Player i’s payoff function πi is described by Figure 1.1:

It is assumed that κ1
i > κ3

i , κ
4
i > κ2

i ,λ
3
i > λ1

i , and λ2
i > λ4

i , i.e., that player i prefers to coordinate

with the other player if θ = 1 and to miscoordinate with the other if θ = −1. Moreover, it is further

assumed that
κ4
i − κ2

i

(κ1
i − κ3

i ) + (κ4
i − κ2

i )
6= λ4

i − λ2
i

(λ1
i − λ3

i ) + (λ4
i − λ2

i )
. (1)
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That is, the ‘cut-point,’ i.e., the probability that she assigns to L−i that makes player i indifferent

between her actions, is different in θ = 1 vs. θ = −1.

1 L−i M−i

Li κ1
i κ2

i

Mi κ3
i κ4

i

−1 L−i M−i

Li λ1
i λ2

i

Mi λ3
i λ4

i

Figure 1.1

Write Ep[πi(θ, ci)] = pπi(θ, ci, L−i) + (1 − p)πi(θ, ci,M−i) for i’s expected payoff when the

parameter is θ, she chooses ci, and assigns probability p to L−i. Taken together, the assumptions

on preferences are equivalent to the following: There exists p[1], p[−1] ∈ (0, 1) with p[1] 6= p[−1]

and:

• If p > p[1], Ep[πi(1, Li)] > Ep[πi(1,Mi)].

• If p < p[1], Ep[πi(1, Li)] < Ep[πi(1,Mi)].

• If p > p[−1], Ep[πi(−1, Li)] < Ep[πi(−1,Mi)].

• If p < p[−1], Ep[πi(−1, Li)] > Ep[πi(−1,Mi)].

Note, the payoffs in Hellman (2014) satisfy the above properties—these are the only properties

his arguments make use of. The payoffs in the main text also satisfy the above conditions. In

addition, the payoffs in the text satisfy the no ties condition required of simple games (which the

above does not explicitly impose). More specifically,

It will be convenient to introduce a mapping W : Ω→ Θ defined as the projection of the second

coordinate of Ω onto Θ. That is, if ω = (i, x0, x1, . . .), then W (ω) = x0 ∈ Θ.

Bayesian Game The set of types of player i is Ti = {{ω} ∪ S−1({ω}) : ω ∈ Ωi}. Note, for each

ti ∈ Ti, there is a unique ω = (i, x0, x1, . . .) ∈ Ω so that

ti = {(i, x0, x1, . . .), (−i, 1, x0, x1, . . .), (−i,−1, x0, x1, . . .)}.

Thus, there is a bijective map τi : Ti → Ωi defined so that τi(ti) = (i, x0, x1, . . .) if and only if

ti = {(i, x0, x1, . . .), (−i, 1, x0, x1, . . .), (−i,−1, x0, x1, . . .)}.
We endow Ti with the smallest topology so that τi is continuous. So, for each open set V ⊆ Ti,

there exists some open set U ⊆ Ωi so that (τi)
−1(U) = V . Using the fact that τi is bijective, for

each open set U ⊆ Ωi, τi((τi)
−1(U)) = U . It follows that Ti is a compact metric space and τi is a

closed mapping.

Define a belief map βi : Ti → ∆(Θ× T−i) as follows: Set βi(ti)(θ, t−i) = 1 if W (τi(ti)) = θ and

τi(ti) ∈ t−i. So, if τi(ti) = (i, x0, x1, x2, . . .), then βi(ti) assigns probability one to (x0, t
∗
−i) where

t∗−i = {(−i, x1, x2, . . .), (i, x0, x1, x2, . . .), (i,−1x0, x1, x2, . . .)}.
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Bayesian Equilibrium Throughout, we will fix a strategy profile (s1, s2) that is a Bayesian

equilibrium. Note, si : Ti → ∆({Li,Mi}). We can derive a λi : Ti → [0, 1] so that λi(ti) = si(ti)(Li).

We will refer to this as the derived strategy of player i. We will then derive mappings li : Ωi → [0, 1]

so that li(ω) = λi((τi)
−1(ω)). We call li the Ωi-derived strategy of player i.

Theorem 1.1 (Hellman’s Main Theorem). If (s1, s2) is a Bayesian Equilibrium, then, for some

player i ∈ I, the Ωi-derived strategy li is not µ-measurable.

Note, µ induces measures on T1 and T2 via τ1 and τ2. Write µ̂i for the image measure of µ

under τi. In the main text, we make use of a corollary of the Hellman result.

Corollary 1.1. If (s1, s2) is a Bayesian Equilibrium, then, for some player i ∈ I, si is not µ̂i-

measurable.

Proof. Note, there is a a measurable mapping f : ∆({Li,Mi}) → [0, 1] so that si(ti) = σi ∈
∆({Li,Mi}) if and only if f(σi)(Li) = λi(ti). So, if si is µ̂i-measurable, then so is λi.

Thus, it suffices to show: If λi is µ̂i-measurable, then li is µ-measurable. Fix some E ⊆ R
Borel. Since λi is µ̂i-measurable, there exists Borel sets F,G ⊆ Ti with F ⊆ (λi)

−1(E) ⊆ G with

µ̂i(F ) = µ̂i(G). Note, τi maps measurable sets to measurable sets. So, τi(F ) ⊆ Ωi and τi(G) ⊆ Ωi

are Borel in Ωi and so Borel in Ω. Thus, we have

µ̂i(F ) = µ̂i((τi)
−1(τi(F ))) = µ(τi(F ))

and

µ̂i(G) = µ̂i((τi)
−1(τi(G))) = µ(τi(G)),

where the first equality uses injectivity of τi. So, notice, we have Borel sets τi(F ), τi(G) ⊆ Ω with

τi(F ) ⊆ τi((λi)−1(E)) ⊆ τi(G) and µ(τi(F )) = µ(τi(G)). Since τi((λi)
−1(E)) = (li)

−1(E), it follows

that (li)
−1(E) ∈ B(Ω;µ), as required.

Thus, we return to show the Hellman result. To do so, it will be convenient to introduce an

Ω-derived strategy l : Ω → [0, 1] so that l(ω) = li(ω) if ω ∈ Ωi. It suffices to show that, if (s1, s2)

is a Bayesian Equilibrium, then l is not µ-measurable.

Properties of a Bayesian Equilibrium Throughout this section, we fix a Bayesian equilibrium

(s1, s2). Now we will derive two properties that (s1, s2) must satisfy. The properties will be stated

in terms of the Ω-derived mapping l. In the next section, we apply a result due to Levy (2012),

which shows that, if a mapping satisfies those properties, then it must not be measurable.

To get at the properties, note that, for each ti there is a unique point (θ∗, t∗−i) is the support of

βi(ti). A feature of the payoffs is:

• If θ∗ = 1 and λ−i(t
∗
−i) = 1 (resp. λ−i(t

∗
−i) = 0), then λi(ti) = 1 (resp. λi(ti) = 0).

• If θ∗ = −1 and λ−i(t
∗
−i) = 1 (resp. λ−i(t

∗
−i) = 0), then λi(ti) = 0 (resp. λi(ti) = 1).
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This comes about from the following fact: If the parameter is θ∗ = 1, then type ti has an incentive

to match t∗−i and, if the parameter is θ∗ = −1, then type ti has an incentive to mis-match t∗−i.

Let us phrase these facts in terms of the Ω-derived strategy l. Fix ω and suppose ω ∈ Ωi, i.e.,

there is some ti with τi(ti) = ω. Then, W (ω) := θ∗ and τi(ti) ∈ t∗−i if and only if τ−i(t
∗
−i) = S(ω).

Thus, we can rephrase the facts as the following property of l:

Lemma 1.1.

• If ω = (i, 1, ·) ∈ Ωi with l(S(ω)) = 1 (resp. l(S(ω)) = 0), then l(ω) = 1 (resp. l(ω) = 0).

• If ω = (i,−1, ·) ∈ Ωi with l(S(ω)) = 1 (resp. l(S(ω)) = 0), then l(ω) = 0 (resp. l(ω) = 1).

We will need one more fact: Before stating the fact in terms of l, let’s first state it in terms of

(s1, s2). It will be convenient to write Bi : Ti → T−i for the mapping that takes ti and maps it to the

t∗−i that determines ti’s best response, i.e., Bi(ti) = t∗−i where τi(ti) ∈ t∗−i. Note, Bi is not injective.

In particular, for each t∗−i, there are two distinct types ti and ui with Bi(ti) = Bi(ui) = t∗−i. For

these ti, ui, τi(ti) = (i, x0, x1, . . .) if and only if τi(ui) = (i,−1x0, x1, . . .). Thus, while ti, ui assigns

probability one to the same type t∗−i, they assign probability one to distinct parameters θ, since

W (τi(ti)) 6= W (τi(ui)).)

Note any equilibrium must satisfy:

If Bi(ti) = Bi(ui) for ti 6= ui, then either λi(ti) ∈ {0, 1} or λi(ui) ∈ {0, 1}.

Without loss of generality, take W (τi(ti)) = 1 and W (τi(ui)) = −1. Write Bi(ti) = Bi(ui) = t∗−i
and consider the probability with which type t∗−i plays L, viz. λi(t

∗
−i).

• Li (resp. Mi) is a unique best response for ti if λi(t
∗
−i) > p[1] (resp. λi(t

∗
−i) < p[1]).

• Li (resp. Mi) is a unique best response for ui if λi(t
∗
−i) < p[−1] (resp. λi(t

∗
−i) > p[−1]).

(Recall the definition of p[1] and p[−1] from the definition of the payoff functions.) Since the payoff

functions were chosen so that p[1] 6= p[−1], it follows that, for any value of λi(t
∗
−i), either ti or ui

has a unique best response.

Now, let’s convert the statement to a property of l. Fix some ω ∈ Ωi and write ti = (τi)
−1(ω).

Then, Bi(ti) is a type t∗−i with τ−i(Bi(ti)) = S(ω). Thus, if Bi(ui) = Bi(ti), then τi(ui) = ω′ with

S(ω′) = S(ω). In this case, either ω′ = ω or ω′ = ι(ω).

Lemma 1.2. Fix some ω ∈ Ωi. Either l(ω) ∈ {0, 1} or l(ι(ω)) ∈ {0, 1}.

Reduction to Levy’s (2012) Result Note the output of Lemmas 1.1-1.2: We get a function

l : Ω→ [0, 1] satisfying the following three properties:

P1 If ω = (i, 1, ·) ∈ Ωi with l(S(ω)) = 1 (resp. l(S(ω)) = 0), then l(ω) = 1 (resp. l(ω) = 0).

P2 If ω = (i,−1, ·) ∈ Ωi with l(S(ω)) = 1 (resp. l(S(ω)) = 0), then l(ω) = 0 (resp. l(ω) = 1).
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P3 If ω ∈ Ωi, either l(ω) ∈ {0, 1} or l(ι(ω)) ∈ {0, 1}.

The main result is Levy (2012) states:

Theorem 1.2 (Levy, 2012). If l : Ω→ [0, 1] satisfies P1-P2-P3, then l is not µ-measurable.

Proof of Theorem 1.1. Immediate from Lemmas 1.1-1.2 and Theorem 1.2.

Overview of Levy, 2012 This section review’s Levy’s (2012) result: Theorem 1.2 is shown by

introducing a function F : Ω → {−1, 1} so that F (ω) = 1 if and only if l(ω) = 1. Also, define a

counting function N : X ×X → 2N0 so that N(x, x′) = {n ∈ N0 : xn 6= x′n}. The theorem follows

from the following two lemmas.

Lemma 1.3. Suppose l : Ω → [0, 1] is a µ-measurable functions satisfying P1-P2-P3. For each

i ∈ I, there exists some Yi ∈ B(X; ν) with ν∗(Yi) = 1 so that the following holds: For each x ∈ Yi
and each x′ ∈ X with |N(x, x′)| finite,

F (i, x) = (−1)|N(x,x′)|F (i, x′).

Lemma 1.4. Fix some f : X → {−1, 1} so that, there exists Y ∈ B(X; ν) with ν∗(Y ) = 1 satisfying

the following criteria: For each x ∈ X and each x′ ∈ X with |N(x, x′)| finite,

f(x) = (−1)|N(x,x′)|f(x′).

Then f is not ν-measurable.

Proof of Theorem 1.2. Suppose l is µ-measurable. Then, by Lemma 1.3, for any given i, there

is some ν-measurable Yi ⊆ X with ν∗(Yi) = 1 so that, for all x ∈ Yi and all x′ ∈ X with |N(x, x′)|
finite, F (i, x) = (−1)|N(x,x′)|F (i, x′). By Lemma 1.4, F (i, ·) : X → {−1, 1} is not ν-measurable,

i.e., there exists some Ei ⊆ {−1, 1} so that (F (i, ·))−1(Ei) ⊆ X is not in B(X; ν).

Now, define a mapping g : [0, 1] → {−1, 1} so that g(k) = −1 if and only if k 6= 1. This is a

Borel measurable function and so g−1(Ei) is Borel measurable. Now, note that

l−1(g−1(Ei)) = [{i} × (F (i, ·))−1(g−1(Ei))] ∪ [{−i} × (F (−i, ·))−1(g−1(Ei))].

Since l is µ-measurable, l−1(g−1(Ei)) ∈ B(Ω;µ). Using this plus the fact that Ω−i ∈ B(Ω) ⊆
B(Ω;µ), l−1(g−1(Ei))\Ω−i ∈ B(Ω;µ). But, by the display, l−1(g−1(Ei))\Ω−i = {i}×(F (i, ·))−1(g−1(Ei))].

So, the fact l−1(g−1(Ei))\Ω−i ∈ B(Ω;µ) implies that (F (i, ·))−1(Ei) ∈ B(X; ν), contradicting the

earlier lemma.

A Useful Lemma Before coming to the proof of Lemmas 1.3-1.4, let us state a useful auxiliary

Lemma.
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Lemma 1.5. Fix a ν-measurable set E ⊆ X with ν∗(E) = 0. Let

F = {x ∈ X : there exists x′ ∈ E with N(x′, x) <∞}.

Then F is ν-measurable with ν∗(F ) = 0.

To show this lemma, it will be useful to have the following: For each n ∈ N, write Zn = {−1, 1}.
Given some N ⊆ N, take X−N =

∏
n 6∈N Zn. Given some E ⊆ X, write

En = {z ∈ Zn : there exists x ∈ E with xn = z}

and

E[N ] =
∏
n∈N

En ×X−N .

Lemma 1.6. Fix a ν-measurable set E ⊆ X. If N ⊆ N is finite, then E[N ] is ν-measurable.

Proof. Since E is ν-measurable, there exists F,G Borel with F ⊆ E ⊆ G and ν(F ) = ν(G).

The sets F [N ] and G[N ] are also Borel and F [N ] ⊆ E[N ] ⊆ G[N ]. It remains to show that

ν(F [N ]) = ν(G[N ]).

Suppose ν(F [N ]) 6= ν(G[N ]), i.e., ν(F [N ]) < ν(G[N ]). Then ν|N |(
∏

n∈N Fn) < ν|N |(
∏

n∈N Gn),

where we write νn for the |N |-fold product of the measure that assigns 1
2 : 1

2 to −1 : 1. Since each

x ∈ F is contained in G, it then follows that ν(F ) < ν(G) a contradiction.

Proof of Lemma 1.5. Fix some E ⊆ X with ν∗(E) = 0. Consider the set E[N ]. By Lemma 1.6,

E[N ] is ν-measurable. Moreover, by construction of the measure ν, ν∗(E[N ]) = 0 if ν∗(E) = 0.

Thus,

0 =
∑
N⊆N:
|N |<∞

ν∗(E[N ]) ≥ ν∗(
⋃

N⊆N:
|N |<∞

E[N ]) = ν∗(F ),

as required.

The next lemma follows from the earlier one.

Lemma 1.7. Fix a µ-measurable set E ⊆ Ω with µ∗(E) = 0. Let

F = {(i, x) ∈ Ω : there exists (i, x′) ∈ E with N(x′, x) <∞} ⊆ E.

Then F is µ-measurable with µ∗(F ) = 0.

Proof of Lemma 1.3 To prove Lemma 1.3, we will need a number of auxiliary results. Begin

by writing M = {ω ∈ Ω : l(ω) ∈ (0, 1)}.

Lemma 1.8.

(i) S(M) ⊆M .
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(ii) If M is µ-measurable, S(M) is µ-measurable.

Proof. Part (i) follows from Properties P1-P2: Suppose, S(ω) 6∈M . Then, by P1-P2, ω 6∈M .

For Part (ii): Recall that S : Ω → Ω is a measurable function from a Polish space to a Polish

space, where each S−1({ω}) is finite. So, by Purves’s (1966) Theorem, S maps Borel sets to Borel

sets. We will argue that, in fact, S maps E ∈ B(Ω;µ) to members of B(Ω;µ): If E ∈ B(Ω;µ)

then there exists Borel F,G with F ⊆ E ⊆ G and µ(G\F ) = 0. Note, S(F ), S(G) are Borel

with S(F ) ⊆ S(E) ⊆ S(G). Note, since S is a µ-preserving transformation, µ(S(G)\S(F )) =

µ(S−1(S(G)\S(F ))). By construction of ν and the definition of S, µ(S−1(S(G)\S(F ))) ≤ 2µ(G\F ) =

0 and so µ(S(G)\S(F )) = 0, as required.

Lemma 1.9.

(i) M ∩ ι(M) = ∅.

(ii) For each E ⊆ Ω, S−1(S(E)) = E ∪ ι(E).

Proof. Part (i) follows from Property P3: Fix ω ∈M and note that some ω′ ∈ S−1({ω}) must be

contained in Ω\M . So, if ω ∈M , ι(ω) ∈ Ω\M .

For Part (ii), fix ω ∈ S−1(S(E)), i.e., there exists ω′ ∈ S(E) so that S(ω) = ω′. Thus, write

ω = (i, x0, x1, . . .) and then ω′ = (−i, x1, x2, . . .). Since ω′ ∈ S(E), there exists ω′′ ∈ E with

S(ω′′) = ω′. Thus, either ω′′ = ω or ω′′ = ι(ω). This establishes S−1(S(E)) ⊆ E ∪ ι(E).

For the converse, fix ω ∈ E ∪ ι(E) with ω = (i, x0, x1, . . .). Then, S(ω) = (−i, x1, . . .). So,

certainly ω ∈ S−1({S(ω)}), as required.

Lemma 1.10. If M is µ-measurable, then µ∗(M) = 0

Proof. Note:

µ∗(M) ≥ µ∗(S(M)) = µ∗(S−1(S(M))) = µ∗(M) + µ∗(ι(M)) = 2µ∗(M),

where the inequality is by Lemma 1.8(i)-(ii), the first equality is by the fact that S is a µ∗-preserving

transformation, the second inequality is by Lemma 1.9(i)-(ii), and the last equality is by the fact

that ι is a µ∗-preserving transformation. This establishes that µ∗(M) = 0.

Define the set M so that

M = M ∪ {(i, x′) ∈ Ω : there exists (i, x) ∈M with |N(x, x′)| <∞}.

Note, if (i, x) ∈ M with |N(x, x′)| < ∞, then (i, x′) ∈ M as well. The following is an immediate

consequence of Lemma 1.10 and Lemma 1.7:

Corollary 1.2. If M is µ-measurable, then µ∗(M) = 0

Lemma 1.11. Suppose M is µ-measurable.
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(i) S−1(Ω\M) ∈ B(Ω;µ) with µ∗(S−1(Ω\M)) = 1.

(ii) For each (i, x) ∈ S−1(Ω\M), F (i, x) = x0F (S(i, x)).

Proof. Begin with Part (i): If M is µ-measurable, then, by Corollary 1.2, M is µ-measurable.

Thus, Ω\M ∈ B(Ω;µ) and, by Lemma 1.10, Ω\M is a set of µ∗-measure 1. Since S is a measure

preserving transformation, S−1(Ω\M) is also a set of µ∗-measure 1.

Turn to Part (ii): Fix (i, x) ∈ S−1(Ω\M) ⊆ S−1(Ω\M). Then S(i, x) ∈ Ω\M ⊆ Ω\M . So,

either l(S(i, x)) = 1 or l(S(i, x)) = 0. We have:

• F (S(i, x)) = 1 if and only if l(S(i, x)) = 1,

• F (S(i, x)) = −1 if and only if l(S(i, x)) = 0,

First suppose that F (S(i, x)) = 1. If x0 = 1, then, by P1, F (i, x) = 1 and, of course, in

this case, x0F (S(i, x)) = 1. If x0 = −1, then, by P2, F (i, x) = −1 and, of course, in this case,

x0F (S(i, x)) = −1. Next suppose that F (S(i, x)) = −1. This implies that l(S(i, x)) = 0. Thus,

if x0 = 1, then, by P1, F (i, x) = −1 and, of course, in this case, x0F (S(i, x)) = −1. Likewise, if

x0 = −1, then, by P2, F (i, x) = 1 and, of course, in this case, x0F (S(i, x)) = 1.

Inductively define sets Y k ⊆ Ω: Set Y 0 = S−1(Ω\M) and set Y k+1 = S−1(Y k).

Lemma 1.12. Suppose M is µ-measurable.

(i) For each k, Y k is µ-measurable, with µ∗(Y k) = 1.

(ii)
⋂∞

k=0 Y
k ∈ B(Ω;µ) with µ∗(

⋂∞
k=0 Y

k) = 1.

(iii) For each K, if (i, x) ∈
⋂K

k=0 Y
k, then F (i, x) = x0 · · ·xKF (SK+1(i, x)).

Proof. Begin with Part (i). The proof is by induction on k. For k = 0, this is immediate from

Lemma 1.11. Assume the lemma is true for k. Since Y k is µ-measurable, there exists E,F ∈
B(Ω) with E ⊆ Y k ⊆ F and µ(E) = µ(F ). Since S is a Borel measure preserving mapping,

S−1(E), S−1(F ) ∈ B(Ω) with S−1(E) ⊆ S−1(Y k) ⊆ S−1(F ) and µ(S−1(E)) = µ(S−1(F )). Thus,

Y k+1 = S−1(Y k) ∈ B(Ω;µ). Moreover, since S is µ∗-preserving and µ∗(Y k) = 1, µ∗(Y k+1) = 1.

Part (ii) is an immediate consequence of Part (i). Turn then to Part (iii). The proof is by

induction on K. The case of K = 0 follows immediate from Lemma 1.11. Assume the lemma is

true for K and we will show it also holds for K + 1.

Fix (i, x) ∈
⋂K+1

k=0 Y k. Then, (i, x) ∈ Y K+1 and so SK+1(i, x) ∈ Y 0. Applying Lemma 1.11(ii),

F (SK+1(i, x)) = [SK+1(i, x)]0F (SK+2(i, x)) = xK+1F (SK+2(i, x)).

But, (i, x) ∈
⋂K

k=0 Y
k and the induction hypothesis also give that, F (i, x) = x0 · · ·xKF (SK+1(i, x)),

i.e.,

F (SK+1(i, x)) =
F (i, x)

x0 · · ·xK
.
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Putting these two facts together gives

F (i, x)

x0 · · ·xK
= xK+1F (SK+2(i, x)),

establishing that

F (i, x) = x0 · · ·xKxK+1F (SK+2(i, x)),

as desired.

Lemma 1.13. If (i, x) ∈
⋂∞

k=0 Y
k and |N(x, x′)| <∞, then (i, x′) ∈

⋂∞
k Y k.

Proof. We will show that for each K and each (i, x) ∈ ∩Kk=0Y
k, (i, x′) ∈ ∩Kk=0Y

k provided

|N(x, x′)| <∞. The proof is by induction on K.

Begin with K = 0. Fix (i, x) ∈ Y 0 and some x′ with |N(x, x′)| < ∞. Write S(i, x) = (−i, y)

and S(i, x′) = (−i, y′) and note that |N(y, y′)| <∞. If (i, x′) 6∈ Y 0 = S−1(Ω\M), then (i, y′) ∈M .

From this and the fact that |N(y, y′)| < ∞, it follows that S(i, x) = (i, y) ∈ M , i.e., (i, x) 6∈
S−1(Ω\M) = Y 0.

Assume the claim holds forK. Fix some (i, x) ∈ ∩K+1
k=0 Y

k and some x′ with |N(x, x′)| <∞. Note

that S(i, x) = (−i, y) ∈
⋂K

k=0 Y
k, since (i, x) ∈

⋂K+1
k=0 Y k. Since S(i, x′) = (i, y′) has |N(y, y′)| <∞,

it follows from the induction hypothesis (i, y′) ∈
⋂K

k=0 Y
k. From this, (i, x′) ∈

⋂K
k=0 Y

k+1, as

required.

Lemma 1.14. Suppose M is µ-measurable. Then, for each i, there exists some Yi ∈ B(X; ν) with

ν∗(Yi) = 1 so that, for all x ∈ Yi and all x′ with |N(x, x′)| <∞,

F (i, x) = (−1)|N(x,x′)|F (i, x′).

Proof. Take Yi to be the i-section of the set
⋂∞

k=0 Y
k, i.e., the set {x ∈ X : (i, x) ∈

⋂∞
k=0 Y

k}.
Since B(Ω;µ) = 2{1,2}×B(X; ν) is a product sigma-algebra that contains

⋂∞
k=0 Y

k, the i-section Yi

is also in B(Ω;µ) = 2{1,2} × B(X; ν). (See Aliprantis and Border (2007, Lemma 4.45).) Fix x ∈ Yi
and some x′ with |N(x, x′)| < ∞; in particular, let K = max{n : xn 6= x′n}. By Lemma 1.13,

x′ ∈ Yi. So, by Lemma 1.12,

F (i, x) = x0 · · ·xKF (SK+1(i, x))

and

F (i, x′) = x′0 · · ·x′KF (SK+1(i, x′)).

Now notice that, in fact, SK+1(i, x) = SK+1(i, x′), so

F (i, x)

F (i, x′)
=
x0 · · ·xK
x′0 · · ·x′K

.

From this, F (i, x) = (−1)|N(x,x′)|F (i, x′), as desired.

Proof of Lemma 1.3. If l is µ-measurable, then M is µ measurable. Thus, the claim follows

from Lemma 1.14.

9



Proof of Lemma 1.4 Suppose there exists some ν-measurable Y ⊆ X with µ∗(Y ) = 1 so that,

for all x ∈ Y ,

f(x) = (−1)|N(x,x′)|f(x′) (2)

whenever |N(x, x′)| <∞. We will show that f cannot be ν-measurable.

It will be useful to introduce terminology: Say q is a finite permutation on N0 if q : N0 → N0

is a bijective mapping where, there exists K so that q(k) = k for all k ≥ K. Say Q is a finite

permutation on X if Q : X → X so that, there exists a finite permutation q on N0 where, for each

x = (x0, x1, . . .) ∈ X, Q(x) = y = (y0, y1, . . .) where yk = xq−1(k). If this condition holds, we will

say that Q is derived from the permutation q. We will make use of the following property:

Property 1.1. If Q is a finite permutation of X, then, for each x ∈ X, |N(x,Q(x))| is even.

Consider the set

Z = (X\Y ) ∪ {x ∈ X : |N(x, x′)| <∞ for some x′ ∈ X\Y }.

There are several things to note. First, if x ∈ Z and |N(x, y)| <∞, then y ∈ Z. Second, X\Y is a

set of ν∗-measure zero. So, by Lemma 1.5, Z is ν-measurable with ν∗(Z) = 0. Define Y = X\Z ⊆ Y
and note that it is a ν-measurable set with ν∗(Y ) = 1.

A set A ⊆ X is called symmetric if, for each finite permutation of X, viz. Q, Q(A) = A.

Lemma 1.15. The sets f−1({1}) ∩ Y and f−1({−1}) ∩ Y are symmetric.

Proof. Fix a finite permutation Q of X and let r ∈ {1,−1}.
First we show that Q(f−1({r}) ∩ Y ) ⊆ f−1({r}) ∩ Y . For this, fix x ∈ Q(f−1({r}) ∩ Y ). So,

there exists some y ∈ f−1({r}) ∩ Y with Q(y) = x. By definition f(y) = r and y ∈ Y ⊆ Y . So,

f(y) = f(y′) for all y′ with |N(y, y′)| finite and even. Notice that Q(y) has |N(y,Q(y))| finite

and even. It follows that f(Q(y)) = r, i.e., x = Q(y) ∈ f−1({r}). Moreover, Q(y) ∈ Y : If not,

then Q(y) ∈ Z and so, using the fact that |N(y,Q(y))| is finite, y ∈ Z, a contradiction. Thus,

x = Q(y) ∈ f−1({r}) ∩ Y , as required.

Next we show that f−1({r}) ∩ Y ⊆ Q(f−1({r}) ∩ Y ). For this, fix x ∈ f−1({r}) ∩ Y and write

x = (x0, x1, . . .). Construct y = (y0, y1, . . .) so that yk = xq(k), where q is the permutation on N0

that induces Q. Thus, Q(y) = x. We will show that y ∈ f−1({r}) ∩ Y , from which it follows that

x ∈ Q(f−1({r}) ∩ Y ).

To see that y ∈ f−1({r}) ∩ Y : Since f(x) = r and x ∈ Y ⊆ Y , for any x′ with |N(x, x′)| finite

and even f(x) = f(x′). Since |N(x, y)| finite and even f(y) = r, i.e., y ∈ f−1({r}). Moreover,

y ∈ Y : If not, then y ∈ Z and so, using the fact that |N(y,Q(y))| = |N(y, x)| is finite, x ∈ Z, a

contradiction.

It will be convenient to set Y + = f−1({1})∩ Y and Y − = f−1({−1})∩ Y . Note, Y + ∩ Y − = ∅
and Y + ∪ Y − = Y . So, if these sets are ν-measurable, ν∗(Y +) + ν∗(Y −) = 1.
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Lemma 1.16. If f is ν-measurable, then ν∗(Y +), ν∗(Y −) ∈ {0, 1}.

Proof. Since f is ν-measurable, the sets Y + = f−1({1}) ∩ Y and Y − = f−1({−1}) ∩ Y are ν-

measurable. Moreover, by Lemma 1.15, they are symmetric. So, by the Hewitt-Savage Theorem

(see, e.g., Dudley, 2002, Theorem 8.4.6), ν∗(Y +), ν∗(Y −) ∈ {0, 1}.

Proof of Lemma 1.4. Throughout, assume f is ν-measurable. Introduce a mapping g : X → X

so that g(x) = y, where x0 6= y0 but, for each k ≥ 1, xk = yk. Note that, for each x ∈ f−1({r}) ∩
Y ⊆ Y , f(g(x)) = −r, since f(x) = r and f(x) = −11f(g(x)). Thus g(Y +) ∩ Y ⊆ Y − and

g(Y −) ∩ Y ⊆ Y +. It is straightforward that g(Y +) and g(Y −) are ν-measurable since Y + and Y −

are ν-measurable. Using the fact that ν∗(g(Y +)∩Y ) = ν∗(g(Y +)) and ν∗(g(Y −)∩Y ) = ν∗(g(Y −)),

it follows that

• ν∗(Y +) + ν∗(g(Y +)) + ν∗(Y −\(g(Y +) ∩ Y )) = 1 and

• ν∗(Y −) + ν∗(g(Y −)) + ν∗(Y +\(g(Y −) ∩ Y )) = 1.

But, then, by construction of the measure ν∗, ν∗(Y +) = ν∗(g(Y +)) and ν∗(Y −) = ν∗(g(Y −)). So,

• 2ν∗(Y +) + ν∗(Y −\(g(Y +) ∩ Y )) = 1 and

• 2ν∗(Y −) + ν∗(Y +\(g(Y −) ∩ Y )) = 1.

The first bullet plus Lemma 1.16 implies that ν∗(Y +) = 0 and the second bullet plus Lemma 1.16

implies that ν∗(Y −) = 0. But this contradicts the fact that ν∗(Y +) + ν∗(Y −) = 1.

2 Correlated Rationalizability

We begin by extending the definitions in Dekel, Fudenberg and Morris (2007) and Battigalli, DiT-

illio, Grillo and Penta (2011) to arbitrary non-finite games.2

Fix an Θ-based Bayesian game (Γ, T ). Set R0
i = Ci×Ti. Assume that Rm

i has been defined for

each i. Then (ci, ti) ∈ Rm+1
i if there exists a measure µ ∈ ∆(Θ× C−i × T−i) so that

(R-i)
∫

Θ×C−i
πi(θ, ci, c−i)dmarg Θ×C−i

µ ≥
∫

Θ×C−i
πi(θ, di, c−i)dmarg Θ×C−i

µ, for each di ∈ Ci,

(R-ii) µ(Θ×Rm
−i) = 1; and

(R-iii) βi(ti) = marg Θ×T−i
µ.

Call Rm =
∏

i∈I R
m
i the set of m-rationalizable choice-type pairs. Call Ri =

⋂
mR

m
i the set of

i-rationalizable choice-type pairs and R =
∏

i∈I Ri the set of rationalizable choice-type pairs.

Remark 2.1. Suppose, for each m, Rm
1 , . . . , R

m
I are non-empty and measurable. Then, for each

m, Rm+1 ⊆ Rm.

2No epistemic justification is given for these definitions.
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Lemma 2.1. Suppose
∏

i∈I Ri 6= ∅. Then, for each i and each m, Rm
i are measurable.

Proof. Suppose, for some player j 6= i and some m, Rm
j is not measurable. Then, there is no

µ ∈ ∆(Θ× C−i × T−i) with µ(Θ×Rm
−i) = 1. As such, Rm+1

i = ∅ and so Ri = ∅.

Fix a Θ-based Bayesian games (Γ, T ) and (Γ, T ∗). Write Rm =
∏

i∈I R
m
i (resp. R =

∏
i∈I Ri)

for the set of m-rationalizable (resp. rationalizable) choice-type pairs in (Γ, T ). Write Rm,∗ =∏
i∈I R

m,∗
i (resp. R∗ =

∏
i∈I R

∗
i ) for the set of m-rationalizable (resp. rationalizable) choice-type

pairs in (Γ, T ∗).

Definition 2.1. Fix a Θ-based game Γ and let T and T ∗ be two Θ-based type structures, so that

T can be embedded into T ∗

(i) 〈T , T ∗〉 satisfies the Rationalizable Extension Property for Γ if, for every injective type

morphism(h1, . . . , h|I|) from T to T ∗, (ci, ti) ∈ Ri implies (ci, hi(ti)) ∈ R∗i .

(ii) 〈T , T ∗〉 satisfies the Rationalizable Pull-Back Property for Γ if, for every injective type

morphism(h1, . . . , h|I|) from T to T ∗, (ci, hi(ti)) ∈ R∗i implies (ci, ti) ∈ Ri.

Proposition 2.1. Fix Θ-based Bayesian games (Γ, T ) and (Γ, T ∗) so that T can be embedded into

T ∗. If, for each i, Ri, R
∗
i 6= ∅, then 〈T , T ∗〉 satisfies the Rationalizable Extension and Pull-Back

Properties for Γ.

Proposition 2.1 will follow from Lemmata 2.1-2.2.

Lemma 2.2. Fix a Θ-based game Γ and Θ-based structures T and T ∗, where T can be properly

embedded into T ∗ via (h1, . . . , hI). Suppose, for each m, Rm
1 , . . . , R

m
I and Rm,∗

1 , . . . , Rm,∗
I are

measurable. Then, for each i = 1, . . . , I,

(i) (ci, ti) ∈ Rm
i implies (ci, hi(ti)) ∈ Rm,∗

i ;

(ii) (ci, ti) ∈ [Ci × Ti] \Rm
i implies (ci, hi(ti)) ∈ [Ci × T ∗i ] \Rm,∗

i .

Proof. The proof is by induction on m. For m = 0 the result is immediate. Assume the result

holds for m. We will show that it also holds for m+ 1.

Begin with part (i): Fix (ci, ti) ∈ Rm+1
i . Then, we can find a measure µ ∈ ∆(Θ × C−i × T−i)

satisfying (R-i)-(R-iii). Extend h−i to
−→
h −i : Θ × C−i × T−i → Θ × C−i × T ∗−i, by setting each

−→
h −i(θ, c−i, t−i) = (θ, c−i, h−i(t−i)). Let µ∗ be the image measure of µ under

−→
h −i. We will show

that µ∗ satisfies analogs of (R-i)-(R-iii), relative to the structure T ∗, i.e.,

(BFK∗-i)
∫

Θ×C−i
πi(θ, ci, c−i)dmarg Θ×Ci

µ∗ ≥
∫

Θ×C−i
πi(θ, di, c−i)dmarg Θ×C−i

µ∗, for each di ∈
Ci;

(BFK∗-ii) µ∗(Θ×Rm,∗
−i ) = 1; and

(BFK∗-iii) β∗i (hi(ti)) = marg Θ×T ∗−i
µ∗.
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This will establish that (ci, hi(ti)) ∈ Rm+1,∗
i .

Condition (R∗-i) follows from (R-i) and the fact that marg Θ×C−i
µ = marg Θ×C−i

µ∗. For con-

dition (R∗-ii) note that

µ∗(Θ×Rm,∗
−i ) = µ((

−→
h −i)

−1(Θ×Rm,∗
−i )) = µ(Θ×Rm

−i) = 1,

where the first equality the fact that Rm,∗
−i is measurable and the definition of an image measure,

the second equality follows from parts (i)-(ii) of the induction hypothesis, and the third equality

follows from (R-ii). For condition (R∗-iii), fix some event E∗ ⊆ Θ× T ∗−i and note that

β∗i (hi(ti))(E
∗) = βi(ti)((id × h−i)−1(E∗))

= marg Θ×T−i
µ((id × h−i)−1(E∗))

= µ(C−i × (id × h−i)−1(E∗))

= µ((
−→
h −i)

−1(C−i × E∗))

= µ∗(C−i × E∗)

= marg Θ×T ∗−i
µ∗(E∗),

where the first line follows from the definition of a type morphism, the second line follows from

condition (R-iii), and the fourth and fifth lines follow from construction.

Now we turn to part (ii). Suppose (ci, hi(ti)) ∈ Rm+1,∗
i . Then, we can find a measure µ∗

satisfying conditions (R∗-i)-(R∗-iii). Let −→g −i : Θ×C−i×h−i(T−i)→ Θ×C−i×T−i be a map, with

each −→g −i(θ, c−i, h−i(t−i)) = (θ, c−i, t−i). Recall that h−i is an embedding. As such, it is injective

and so −→g −i is well-defined. Likewise, h−i is bimeasurable, and so −→g −i is the product of measurable

maps and so measurable. Using (R∗-ii), µ∗(Θ×C−i × h−i(T−i)) = 1. So, the image measure of µ∗

under −→g −i is well-defined. Write µ for this measure. We need to show that µ satisfies conditions

(R-i)-(R-iii).

Conditions (R-i)-(R-ii) are shown by repeating the arguments (R∗-i)-(R∗-ii) above. We focus

on condition (R-iii). Fix some event E ⊆ Θ× T−i and recall that

µ(C−i × E) = µ∗((−→g −i)−1(C−i × E))

= µ∗(C−i × (id × h−i)(E))

= marg Θ×T ∗−i
µ∗((id × h−i)(E))

= β∗i (hi(ti))((id × h−i)(E))

= βi(ti)((id × h−i)−1((id × h−i)(E)))

= βi(ti)(E),

where the first line follows from the fact that −→g −i is measurable, the fourth line follows from

condition (R∗-iii), the fifth line follows from the definition of a type morphism, and the last line

uses the fact that h−i is injective. This establishes (R-iii).
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